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Summary

Binary partially balanced incomplete block design theory has been
generalized in the sense that i'th treatment occurs either ma or mi times,
O^mo<nh, in the y'fh block rather than zero or one time as in
traditional design theory. The intrablock analysis for general binary
partially balanced block designs with s associate classes is described
along with solutions for eHects, variances, and efficiencies. Tiie existence
of these designs is proved and a method of construction is given. Optima-
lity criteria are developed for selecting an optimal design or designs from
the constructed class of group divisible binary partially balanced block
designs. Eigen values were evaluated for group divisible, triangular
association scheme, and latin square association scheme general binary
partially balanced block designs. An example is presented showing how
to construct a classof general binary partially balanced block designs and
to use the six optimality criteriadeveloped in selecting an optimal design
ordesigns.

1, Introduction

Statistical literature on binary partially balanced incomplete
block designs had been confined largely to the case wherein the
occurrence, ni;-, of the r'th treatment in the/th block is either zero
or one. Cheng [3], Shafiq [5j, and Shaflq and Federer [6], have
considered more general situations. The former considered, among
other items, the case where lUj was either m or w+1, and the latter
considered the case where nij was either mo or mi, 0</Wo<7Ki, Wq and
mi being positive integers.

When nij is zero or one, the design, is denoted as a basic
binary paitially balanced incomplete block design; the design
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parameters are the number of treatments v, the number of block b,
the number of replicates r, of each treatment, the size of the block
A:, and the number of treatments «a<v (a=I, 2,..., s) which have
pairs of treatments occurring in exactly blocks where at least two
of the A„ are unequal. The parameters of the general binary partially
balanced block design are defined as functions of the parameters of
the basic design, Wq, and nii.. Complete, incomplete and orthogonal
general binary partially balanced block designs (GBPBBD) are defined.
Conditions on the coeflicient matrix C* of a GBPBBD with a
associations classes are given for a design to be s-partially variance
balanced. A result from Bose and Mesner [I] is generalized and
used extensively in obtaining the intrablock analysis for a GBPBBD.
Intrablock solutions for treatment effects and the various variances
of a difference between two effects are given. Relative efficiencies of
two designs for special cases are also presented,

The eigenvalues of ifif, where n * is the incidence matrix of
GBPBBD, and of the coefficient matrix C* were obtained. The
resuhs are applied to find the eigenvalues of three classes of designs-
group divisible GBPBBD, GBPBBD having a triangular association
scheme, and GBPBBD having a latin square association scheme (see
e.g., Bose, Clatworthy, and Shrikhande [2]).

The existence of a basic binary partially balanced incomplete
block design (BBPBIBD) implies the existence of a class of
GBPBBD's for given vand b. In Theorems 5.1, 5.2, and 5.3 criteria
are developed for ^ Z)-optimality ofa design in the class of
two associate group divisible GBPBBD's. An example is included
to illustrate the consequences and uses of Theorems 5.1 to 5.3. It
should be noted that the results can be extended to more than two
associate classes, but the accompanying algebra becomes laborious.

2. Parameters of General Binary Partially Balanced Block
Design (gbpbbd) and Some Definitions

Definition 2.1 Given a basic binary partially balanced incom
plete block design (BBPBIBD) with design parameters (v, b, r, k, Xi,
^2, nij=0 OT I) and an association scheme with the para
meters 1,7, u=l, 2, ..., j), a general binary partially balanced
block design (GBPBBD) with parameters (v, b, t*, k*, X\ Xg, •••,

/7,-y =mo or nti) and the same scheme as given above, is defined to
be an arrangement of vtreatments in bblocks each of size k* (yt* not
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necessarily less than v) such that its incidence matrix is defined by

«*=n(wi—/Mo)+/mg •••(2.1)

where /^isthevXi) incidence matrix of a BBPBIBD, J is avXb
matrix with unit entries everywhere, and 0</;io<Wi, mo and m-i
being any two positive integers.

The parameters of a GBPBBD are;

r*=rmi+(&-r)/?Jo, -(2.2)

k*='kmi+{v-k)mQ, —(2.3)

•••(2.4)
i=]

b •••(2.5)

VVhj =\
j=\ (A* if(g,/z) are fth associates, ...(2.6)

Ao=r*(mi+OTo)—i/MiOTo, ...(2.7)

A*=Mwi-Wo)®+2Kmi-Wo)OTo+6w2, ...(2.8)

and vr*=bk*=N*. ...(2.9)

Definition!.! A GBPBBD is said to be incomplete if /J7q=0,
otherwise, it is complete.

Definition 2.3 A complete GBPBBD js said to be orthogonal
if nlj=r^k*lN*, where N* is the total number of observations, is
^he number of replications of the z'th treatment, A:*-is the number of
entries in they'th block and n'j is the (f,y)'th entry of?^.

Definition 2.4 A GBPBBD with s association classes is said to
be j-partially variance balanced if the coefficient matrix C* can be
expressed as ~

..,+c:b,. (2.10)
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where Aq and are as defined above,

c: = -(K i=2, 3,

and

where

and

J—^o+Bi +... -{-Bs,

Bq=1 and Bi=(b^gi)

1 if (g, h) are r'th associates

0 otherwise

3. INTRABLOCK ANALYSIS OF GENERAL BINARY PARTIALLY BALANCED
Block Design (GBPBBD) with s Association Classes

Using the usual linear model for a GBPBBD under the
assumptions of homoscedasticity and uncorrelated errors, the best
linear unbiased estimate of the treatment effects may be obtained
from the reduced normal equations as :

C*T=g, ...(3.1)

where.

C*=r*/-_«*«*7/c*, ...(3.2)

Q—T—n* 5//c*, r and 5 are vectors of treatment

'and block totals, respectively, •.•(3.3)

^^'=A; Bo +A* 5i + ... +a: B,. ...(3.4)

Equation (3.4) is an extension of the equation «?/= /'.Bo+Ai£i+A252
+ ...+\Bs from Bose and Mesner [1], and it redi^ces to their result

if mo=0 and OTi=!. To derive (3.4) we write

jl*n*'=[n(mi—mo)+Jmo] W +

=X* /+XJ 5i+...+a: 5,.
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Thus, equation (3.2) may be rewritten as :

...(3.5)

C*=

i=2

Now, normal equation (3.1) may be written as :

(r'/c'-X*) ^ Ai ^ Xa
k* k k*

T=e. -(3.6)
k*~ J- -

After some lengthy algebraic manipulations, a solution of (3.6)
is obtained as :

s s

...(3.7)
1=1 H=1

where S 0, (jg) is the ^'th element of the vector \SuiQg)
g=\

is the g'th element of the vector J*'" are elements of the

matrix D in the matrix equation B,, r=DB„Q, and the other symbols
are as defined previously ; rf*"' is the (?", m)' th entry of (t?-„)~^; the
inverse matrix {diJ, where

diu-(nX-pUK-pU K---pise's)if

^uu "('" k'—\'i-Ht^u~Pul\~Pu2^2'~-"~Pns •

When treatments g and li are M'th associates.

A A 2o"
Var ("^g—

k'-Z di%

k'-W
...(3.8)

The estimate of error variance may be obtained from the analysis of
variance for a GBPBBD for s association classes as given in Table
3.1.
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TABLE 3.1.

Analysis of Variance for a GBPBBD

Source of Variation d.f. S.S. M.S.

Blocks

(unadjusted)

Treatments

b-1 Pjl

(adjusted) v-1

V

f2= ^ Qg
g = l

S.S. Treatment

V—1

Residual N*-h-v+!yy p'p .^<>2 S.S. Residual
- - JN^ -L— _ - N*-b—v + 1

Total N*—1 Y'Y—CyN*

For two associate class designs the equations (3.7) and (3.8) may be
written as :

/N

T •
k* ^ . I

and

where

x{+d*^^ X^) 6-2 (2,)] ...(3.9)

var (.-^;)=(V2.^ >1' ' \ k*-A;/r=^ )l^j ...(3.10)
where {g, h) are the ii'Xh. associates (m=I, 2). The values of (i^*''«)
and the value of determinant of D'^ may beobtained as :

rf-" =(,V-A;+X*+pf2 (X2*-?^i)//t*det

(?^2-?^I)M2 det

=pUK-'^') Ik* det

k*^ det=(/-*A:*-A*+AP (/•*^*-a;+a;)
+(a;-A2) {p\^ r'-'k'̂ ~K+K)-pl2{r*k*-xl+-K\)}.
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Then, we may rewrite equations (3.7) and (3.8) as :

+

k* det
Qu

47

.(3.11)

/S A

Var (t/-Tj)
2g2 yfc*.

yt*^ det +
if {g, h) are first associates. ...(3.12)

and

Var {•^h-'̂ g) =
2o2/c*

if {g, It) are second associates ...(3.13)

The eigenvalues of C*, denoted by 0,- (C*) may be written as ;

So {C*)=r*-r*k*ik'>'=0,

and

h {£*)-

where

r''k*-ii+hiK-K) p12-p!2-^^)+K+K},
k* ~

r*k''-r,+HK-K^ (ph-pf2+ V a)+a:+x;}
k*

...(3.14)

and

The multiplicities of the roots of C* are:

ao=v-ai- a2=I,

ni+n« (pfz-pW («i+"a)+«i-"a
2 ^

...(3.15)

fri + «2 , (/'?2-/'i2)("i+ "2) + "1-"2
2 ^ •" 2VA
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For special classes of two associate class designs, the and
/=0, 1, 2, take on the following values:

(z) For a GBPBBD having a group divisible association
schenie, (C*)=0, di {C*) = v'Kyk* and 62 {C*)—r*k*
—Ao+^p/7c*=[/7Ai (v —n) A*]/yc*, with multiplicities Cq (^*)
= 1, ^x{C*)=m —\, and c2.{.C)=m («—1).

(«) For a GBPBBD having a triangular association Scheme,

^0 (C*)=0, (c*) = [r*/c*-A;-(n-4)Aj+(n-3)A5l/^*.
and 02(C*)= [/-*/c* —Ao+A^+(Ai- Ap]/A:*, with multipli
cities i^(C*)=I, ai (C='=) —n— I, and 0(2 (C*)=n (n—3)/2.

{Hi) For a GBPBBD having a /ar/n. square type association
scheme, e„ (C*)= L A^+(^-f+
I)A*]//c*, and (C*)=[/-*/c*-A*+zA^-(i-l)A;]/A:*,with
multiplicities ao(C*)=], ai(C*) = j U—1), and
= (5-f+l)(5'-]).

(C*)

4. Relative Efficiency of a GBPBBD

A method of comparing two designs is to compute the relative
eiRcieney of one design over the other. Thus, given (v, b, r*, k*),
the efficiency of a GBPBBD relative to a general binary balanced
block design (GBBBD) [if such designs exist] may be obtained as
follows. Let (g, h) be the first associates, then for a GBPBBD, the

Var

2(72

vX*

- A^ + A^) + {p\.^ -pli){K -
A:* Met

and for a GBBBD, the Var '̂ g —''h={l<y^lr*){r*k*lv'k*) (seeShafiq and
Federer [6]). The efficiency of a GBPBBD relative to a GBBBD,
where {g, h) are first associates, is :
£*(GBPBBD/GBBBD)

yt*2det
v̂Anr*/c=^- a;+ a; ,+ {p\^ ~;^^,)(a;-a;)}

/•*A:*-a; 4-At
vA*

...(4.1)

1
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Similarly, jBa^CrBPBBD/GBBBD) denotes the elEciency of GBPBBD,
relative to GBBBD, where (g, h) are second associates, thus :

£*2(GBPBBD/GBBBD)

r*k^~-hl + -k\ ph(K- Af
vX*

T- ...(4 2)vX*[r*/c* Aq -f Aj + {p]2 —/'l2)('̂ i ~ Ag))

For group divisible designs having two association clashes, we
may write variances of the difference of and efficiencies
as

k*

vX',
r/A;+(v-iK\ ]
A«a:+(v - «)x; n\i+(v - «)a; , -(4.3)

Var (i:.-T/,)=2ct2 ^ A;*
_L h) are first associates, ...(4.4)nAi + (^v —nJAg

, a; + (v- l)A* \Var(Tg—t/,)=2o2^—I —. jif (g, h) are secondassociates,
VA^ \ 4- — rtjAo ^

...(4.5)

'̂(GDGBPBBD/GBBBD)

«Ai+ (v—n)X2.
vX*

if (g, A) are fist associates, ...(4.6)

and

£*g (GDGBPBBD/GBBBD)

A*2 /«aJ + (v—«)A*
X* VAi+ (v—i)X

/i)are second associates ...(4.7)

The average variance for a group divisible GBPBBD is obtained as :

2ct%* rvA^ + CAj-A'j I
V= (v-i)a;'L ''̂ *2 +"(^i~'̂ *2) ^

The average efficiency is :

E' (GDGBPBBD/GBBBD)

va;+(a;-a;) i
= (v-1)A;/vA*

vA;+«(A*-A*^) v_

...(4.8)

••'•(4.9)
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5. Existence and Optimality of GBPBBD

The existence of a basic binary partially balanced incomplete
block design (BBPBIBD) with parameters {v, b, r, k,
jiij^Q or I) and the parameters of the association scheme {ih, m, •••,

"f P)k ^^=1) 2. 5')) implies the existence of a general binary
partially balanced block design (GBPBBD) with parameters (v, b, j-*,
k*, A*, A*; ?i'j =Wo or mi) and with the same parameters of
the association scheme. In the class of all equi-replicated and equi-
sized block GBPBBDs, the question arises as to which one(s) of these
partially balanced block designs has (have) the |smallest average
variance. We answer this question for group divisible general binary
partially balanced block designs with two association classes in the
next three theorems.

Theorem 5.1. In the class of all equi-replicated equi-sized block
group divisible general binary partially balanced block designs (GD
GBPBBD) with two association classes with parameters (m^ tta, b^.
fh or m,S) which are derived from group divisible
basic binary partially balanced incomplete block designs (GD
BBPBIBD) having two association classes with parameters (wd rid, bd,
I'd, kd. Aid, Xzd", «v=0 or 1) such that Airf=A2(j+l, the design(s) which
maxmimizes the value of

I^KC^)- {md~l) {v —mg) {ridbdim/d-modYlvr^}^
tiiC*) + {2md—l —v) ndbd {.mid—modYhi

is (are) ^-optimal, where tr{C^)=[{v-l{r*a~rd)ibd~rd){mid-mod)Vrd].

Theorem5.2. In the class of all equi-replicated and equi-sized block
group divisible general binary partially balanced block designs (GD
GBPBBD) having two association classes with paiameters mgrid, bd,
f'd, Kd' Kd, Ai =fnod or mid) which are derived from group divisi

ble basic binary partially balanced incomplete block designs (GD
BBPBIBD) having two association classes with parameters {mattd, bd,
Td, J<^d, ^id, Aad; ttij—O or 1) such that \'i=\2d+ I, anddesign(s) having
the minimal value of {rdibd-rd)+ bdi}id- I)} {mid~mod)^ is (are)
E-optimal.

Theorem 5.3. In the class of all equi-replicated and equi-sized
blocks group divisible general binary partially balanced block designs
(GD GBPBBD) having two association classes with parameters
imditd, bd, ra, kj, A*^, A,,;, n'j=mod or m^) which are derived from
group divisible basic binary partially balanced incomplete block



I

GENERAL BINARY PARTIALLY BALANCED BLOCK DESIGNS 51

designs (GD BBPBIBD) having two association classes with para
meters b,i, ru, ka, \d, ^hj=^ or 1) such tliat ?^i=>i2+I, the
design(s) having the minimal values of

and

is (are) D-optimal.

[rdibd- rd)+bdirid -1 )}(mid- Worf)^

rA-rJ-6. ( r-i) (mid—/Mod)^

The proofs of the theorems have been omitted for lack of space.
However, they are straightforward, and if any difficulty ensues, the
reader is invited lo write one of the authors. Instead, an example
illustrating the results of the theorems is presented next.

6. An Example

Some consequences of the theorems considered in the last
section are illustrated by the following example. Before proceeding
to the example, some items should be noted. A frequent assumption
of statisticians is that block size must be relatively small. Although
this assumption may be true in many situations, it is not univeisally
true. In sugar cane and pineapple plantations in Hawaii, sugar beet
fields in Colorado, wheat fields in Kansas and Oklahoma, in a single
growth chamber, etc. blocking is often of no avail in reducing varia
tion in an experiment. Minimum, not maximum, blocking should
be used to control heterogeneity in the experimental material. In
some situations, quite large numbers of experimental units can be
included in a block without increasing the estimated residual variance.
The example given by Shafiq and Federer [6] illustrates the efficiency
of a GBBBD relative to traditional designs. Also, in some ex
periments, the experimental technique and procedure induce hetero
geneity between blocks, whereas none may be present if uniform
techniques and procedures were used. Finally, the statistician should
provide designs for all situations, not merely a subset of them.

Example 6.1. Suppose an experimenter wants to test 12
treatments in, at most, 12 blocks of homogeneous material. We know
that a balanced design would require at least 22 blocks [see
Raghavarao (4)]. Possible candidates for perforrning this experiment
would be group divisible (CD)- partially balanced incomplete block
designs. Suppose all the homogeneous material must be used and
/•*=64 is fixed, There are four GD b^sic binary partially balanced
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TABLE 6.1

Plans for group divisible basic binary partially balanced incomplete
block designs (GD BBPBIBD)

BBPBIBD-1

v=12, 6=3, /•=2, k=S
Xi= 2, Xi=l,m=3, n=4 .

BBPBIBD—2

v=12, b=A, r=3, k=9
Ai=3, X2=2, ff;=4, n = 3

Blocks

I 2 5

1 2 3
2 3 4
4 5 6
5 6 7

7 8 9
8 9 10

10 11 12

11 12 1

BBPBIBD—3

v=I2, 6=6, r=5, k=10
Xi=5, ^2=4, m=6, n=2

Blocks

I 2 3 4 5 6

1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
7 8 9 10 11 12
8 9 10 11 12 1
9 10 11 12 1 2-

10 n 12 1 2 3
11 12 1 2 3 4

Blocks

1 2 5

1 2 3 4
2 3 4 5
3 4 5 6
5 6 7 8
6 7 8 9
7 8 9 10
9 10 11 12.

10 11 12 1
11 12 1 2

BBPBIBD—4

v=12, 6=12, r=4. A:=4
Xi=2, X2 = l, /n = 6, n=2

Blocks

1 2 i 5 5 7 5 P 10 12

1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 11 12 1

5 6 7 8 9 10 11 12 1 2 3 4

7 8 9 10 11 12 1 2 3 4 5 6

I
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TABLE 6.2

Plans for group divisible general binary parciail;' balanced block designs
derived from fiie designs in Table 6.1

GD
BBPBIBD

d

Parameters of GD
GBPBBD

Optimality measures

'^a ^*2
i

tnua m-id
mid

-moa Id IIf*d y'a

-1

-2

—3

—4

1 256 2048 1024 0 32 32 2* 2048 672.0 663.8 11264

2 256 1926 1085 -2 31 29 2* 1682 677.7 672.4 9251

3 256 1816 1140 4 30 26 2* 1352 682.9 679.6 7436

4 256 1718 1189 6 29 23 2* 1058 687.5 685.5 5819

5 256 1632 1232 8 28 20 2* 800 691.5 690.4 4400

6 256 1558 1269 10 27 17 2* 578 695.0 694.4 3179

7 255 1496 1300 12 26 14 2* 392 698.0 697.6 2156

8 256 1446 1325 14 25 11 2* 242 700.2 700,1 1331

9 256 1408 1344 • 16 24 8 2* 128 702.0 702.0 704

10 256 1382 1357 18 '23 5 2* 50 703.2 703.2 275

11 256 1368 1364 20 22 2 2* 8* 703.9* 703.9* 44*

12 192 1324 924 1 21 20 3 1200 685.3 683.8 4^00

13 192 1216 960 4 20 16 3 768 692.0 691.4 '2816

14 192 1132 988 7 19 12 3 432 697.3 697.1 1584

15 192 1072 1008 10 18 8 3 192 701.0 701.0 704

16 192 1036 1020 13 17 4 3 48 703.3 703.2 176

17 128 736 672 4 12 8 5 320 703.4 703.4 704

18 128 686 682 9 11 2 5 20 703.7 703.7 44*

19 64 512 256 0 16 16 32 8192 576.0 572.6 11264

20 64 454 285 1 14 13 32 5408 619.5 618.1 7430

21 64 408 308 2 12 10 32 3200 654.0 653.5 4400

22 64 374 325 3 10 7 32 1568 679.5 679.4 2156

23 64 352 336 4 8 4 32 512 696.0 696.0 704

24 64 342 341 5 6 1* 32 32 703.5 703.5 44*

(1) Ji=rd{ba—rd)-

(2) {bd—rdKmid-modY

(3) in'^=tr (Cl^)

(4) /K^=y4-optimality criterion

(5) Fj=E-optimalit^ criterion
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incomplete block designs having Xi=Xa+l (Bose,ClatworthyandShri-
kliande [2]). These designs would be used to construct GD GBPBBD
for v= 12 and r*=64. The plans for these GD BBPBIBD's are given
in Table 6.1. The parameters of GD GBPBBD constructed from GD
BBPBIBD-1 to GD BBPBIBD-4 in Table 6.1 and various optimality
measures are presented in Table 6.2.

Twenty-four designs listed in Table 6.2 from a complete class
of GD GBPBBD with v=12 and r*=64 derived from GD BBPBIBD
having Xi=X2+1. Six different optimality measures described in
Table 6.2 result in six subclasses. Optimal designs in each subclass
marked * are given in Table 6.3.

TABLE 6.3

Optimal design^ in each of six subclasses

Opiimaliry measui e

/Wid—

II.,

111,1

iK

Optimal design
number (s)

24

I-ll

11

11

H .

11, 18, 24

We note a few interesting results from Table 6.3. Design 24 is
the only member of its class whichachievesWi—OTo=1, but optimality
criterion IV^ would select Design 11 as the optima] one; and this
design estimates all the elementary contrasts with the minimum
average variance of 2t'® (.015627), and therefore is optimal. The
average variance of all elementary contrasts is 2^2 (.015632) for
Design 18 and 2oM.015636) for Design 24. Designs 11, 18 and 24
have the same minimal value 44 pf V/, hence, they are equivalent in
the sense of E-optimality,
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