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SUMMARY

Binary partially balanced incomplete block design theory has been
generalized in the sense that i’th treatment occurs either mo or m; times,
O mo<mm, in the j’th block rather than zero or one time as in
traditional design theory. The intrablock analysis for gemeral binary
partially balanced block deésigns with s associate classes is described
along with solutions for effects, variances, and efliciencies. The existence
of these designs is proved and a method of construction is given. Optima-
lity criteria are developed for selecting an optimal design or designs from
the constructed class of group divisible binary partially balanced block
designs. Eigen values were evaluated for group divisible, triangular
association scheme, and latin square association scheme general binary
partially balanced block designs. An example is presented showing how
to construct a class of general binary partially balanced block designs and
to use the six optimality criteria developed in selecting an optimal design
ordesigus.

1. INTRODUCTION

Statistical literature on binary partially balanced incomplete
block designs had been confined largely to the case wherein the
occurrence, nij, of the #’th treatment in the j’th block is either zero
or one. Cheng[3], Shafiq [5], and Shafiq and Federer [6], have
considered more general situations. The former considered, among
other items, the case where #i; was either m or m=+1, and the latter
considered the case where ni; was either myg or 1y, 0K mg<<itny, m, and
my being positive integers.

When #i; is zero or one, the design, is denoted as a basic
binary partially balanced incomplete block design; the design
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parameters are the number of treatments v, the number of block b,
the number of replicates r, of each treatment, the size of the block
k, and the number of treatments n,<v (a=1, 2,..., s) which have
pairs of treatments occurring in exactly A, blocks where at least two
of the A, are unequal. The parameters of the general binary partially
balanced block design are defined as functions of the parameters of
the basic design, m,, and m;. Complete, incomplete and orthogonal
general binary partially balanced block designs (GBPBBD) are defined.
Conditions on the coefficient matrix C* of a GBPBBD with a
associations classes are given for a design to be s-partially variance
balanced. A result from Bose and Mesner [1] is generalized and
used extensively in obtaining the intrablock analysis for a GBPBBD.
Intrablock svlutions for treatment effects and the various variances
of a difference between two effects are given. Relative efficiencies of
two designs for special cases are also presented,

The eigenvalues of n*n*', where n*is the incidence matrix of
GBPBBD, and of the coefficient matrix’ C* were obtained. The

results are applied to find the eigenvalues of three classes of designs;
group divisible GBPBBD, GBPBBD having a triangular association
scheme, and GBPBBD having a latin square association scheme (see,
e.g., Bose, Clatworthy, and Shrikhande [2]).

The existence of a basic binary partially balanced incomplete
block design (BBPBIBD) implies the existence of a class of
GBPBBD’s for given v and 5. In Theorems 5.1, 5.2, and 5.3 criteria
are developed for A —, F—, D-optimality of a design in the class of
two associate group divisible GBPBBD’s. An example is included
to illustrate the consequences and uses of Theorems 5.1 to5.3. It
should be noted that the results can be extended to more than two
associate classes, but the accompanying algebra becomes laborious.

2. PARAMETERS OF GENERAL BINARY PARTIALLY BALANCED BLock
DESIGN (GBPBBD) AND SOME D EFINITIONS

Definition 2.1 Given a basic binary partially balanced incom-
plete block design (BBPBIBD) with design parameters (v, b, r, k, ,,
A2, -y Ay mi;=0o0r 1) and an association scheme with the para-
meters (#,. pj-u; i,j,u=I1,2, ..., 5), a general binary partially balanced
block design (GBPBBD) with parameters (v, b, 1*, I*, N M

Ags 1 =mq or my) and the same scheme as given above, is defined to
be an arrangement of v treatments in b blocks each of size k* (k* not
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necessarily less than v) such tﬁaf its incid‘encc matrix is defined by
n¥=n(my—mg)+Jmo ..(2.1)
where n is the vXb incidence matrix of a BBPBIBD, J is a vxb
matrix with unit entries everywhere, and 0<mo<<my, me and my

being any two positive integers.

The parameters of a GBPBBD are:

r*=rm+(b—r)ms, - (2.2)
k*=kmy+(v—k)my, ..(2.3)

S
gmh‘i =p*(k* — my — mg)+ bmymy, (2.4

i=1
b A if g=h, ...(2.5)

2";’";}' =3...

e Ay if (g,h) are i’th associates, ...(2.6)
No=r*(my+mg)—bmymy, ..(2.7)
7\;=7\i(m1—nio)2+2r(m1—mo)m0+bmg, . (28)
and vr*=bk*=N*, ...(2.9)

Definition 2.2 A GBPBBD is said to be incomplete if my=0,
otherwise, it is complete.

Definition 2.3 A complete GBPBBD js said to be orthogonal
if ngy=ry k;/N*, where N* is the total number of observations, r; is
*he number of replications of the #°th treatment, k; is the number of
entries in the j’th block and n;; is the (i, j)’th entry of n*.

Definition 2.4 A GBPBBD with s association classes is said to
be s-partially variance balanced if the coefficient matrix C* can be
expressed as -

CH=cyl++¢ J+C, Byt o+ B.. (2.10)
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where A; and A are as defined above,y
o =r"~N/k* -+ /k*,
=K,

¢ = —(N] =Nk, i=2, 3, ..., 5,

and
J=Byt+B,+...+B;,
where
By=1Iand Bi=(p")
and

bh—

g

} { 1if (g, h) are Pth associates

0 otherwise

3. INTRABLOCK ANALYSIS OF GENERAL BINARY PARTIALLY BALANCED
BLock DEsIGN (GBPBBD) WITH § ASSOCIATION CLASSES

Using the usuval linear model for a GBPBBD under the
assumptions of homoscedasticity and uncorrelated errors, the best
linear unbiased estimate of the treatment effects may be obtained
from the reduced normal equations as :

C* =0, (3.1)
where. '

Cr=r L= [, -(3.2)

Q=T—n* B/k* T and B are vectors of treatment

‘and block totals, respectively, ...(3.3)
' =Ny By + 2] Bi+ - 435 Bs. --(3.4)
Equation (3.4) is an extension of the equation nn'=rBo+xB1+2eB,

+...-+AB;s from Bose and Mesner [1], and it reduces to their result
if my=0 and m;=1. To derive (3.4) we write

¥ =[n (my—mo)+-Jmo] [’ (my—mo)+J'my]

=k I+ Bit... X B,




GENERAL BINARY PARTIALLY BALANCED BLOCK DESIGNS 45

Thus, equation (3.2) may be rewritten as :

'k —25+AY) A
C*= —’_k’;;l” 1 kl —M)B:.
1—2
...(3.5)
Now, normal equation (3.1) may be written as :
(rllct_ )\- 7\ 7\‘ 'A.
[TO) ‘Bio kls, D1~ ?2;_92 - ...—'f* _Bs 1——"Q_ ...(3.6)

After some lengthy algebraic manipulations, a solution of (3.6)
is obtained as :

A k* A7
T kg e k — 2 Z AN 5, (Qy)

i=1 u=1

(3.7

: vooa ‘
where & 1,0, 8, (T,;.) is the g’th element of the vector B, f,_ S.0,)

is the g’th element of the vector B, @, d¥™ are elements of the

A . :
matrix D in the matrix equation B, 7= _DB,,Q_, and the other symbols
are as defined previously ; d*® is the (i, u)’ th entry of (di)~*; the
inverse matrix (d;,), where

dy, (n 7\u pul7\ —Piz 7\‘2 - "'—plfts)":)/k*’ if uzi
uu —(r k ?\ +”u (1] pul pu27\ - —P?zfs 7\:)/k.’

When treatments g and / are u’th associates,

s
k"= di

i=]
k"‘"?\;/r* ---(3.8)

A A 202
Var (Tg—Th)=T€

The estimate of error variance may be obtained from the analysis of
variance for a GBPBBD for s association classes as given in Table
3.1. :




-
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TABLE 3.1.

Analysis of Variance for 2 GBPBBD

Source of Variation d. f. ' S.S. M.S. -
Blocks
A
(unadjusted) b-1 8'B
Treatments
v
j - S.S. Treat
(adjusted) - v-1 To= 22" 0, +me"t i
g=1
. . G* A 2 2% S.S. Residual
W Yo X R 2
Residual N¥—b—y+1 !’ ):_ ¥ B B T Qc N*— b—v+1
Total N#*—1 Y'Y—G¥N*®

For two associate class designs the equations (3.7) and (3.8) may be
written as :

A k* [
e PR 0, + rFIF — g [(d*u )\I-i-d*zl?\'g)

S1(Qg)+(d*® \[+d*22 2%) 2 (0,)] ...(3.9)

and

k*— g+l 7\2_ d>s<2u7\‘.2 )( 202 )

k*—ng/r* re

Var (7, —)= ( . (3.10)

where (g, k) are the u'th associates (u=1, 2). The values of (d*iu)
and the value of determinant of D! may be obtained as :

A = (K =M+ phy 05— M)A det |

|
d"2=p., (S—N)[ks det ‘
d"# =pl,(\}—1") k" det

A= ANk ply 04— A)R* det i

where

k*2 det==(r*k* =23+ A7) (r*k*— 2% +2})
+(\ -2 {pl, PR AN — pLa(r ¥k — ag A}
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Then, we may rewrite equations (3.7) and (3.8) as :

Pt A A (plo— pE) (A~ A9

g ¥ det Cs
4+ L= k* d . S1 (0g), .3.11)
Var (z—,)= k“ (RN = p) 32
if (g, &) are first associates. ..(3.12)
and
A ~ 9 /
Var (5= 75)= k*o‘ (ci et [([*k*_AOT)‘l)_i_(Plz pia) (A1~ A,

if (g, h) are second associates ..(3.13)
The ecigenvalues of C*, denoted by 6; (C*) may be written as :

8, (C*)=r*— r*k* k*=0,

rek*—a +%{7‘1 7‘2)1’12 1712 \/A)+7‘1+7\2}

...(3.14)
and
a — & ‘_ o 1 . 2 L] ¥
0y (g‘*)zr*b‘ Agt3{AI—2) 5617*12 piat VAT A2}
where A=(p}y~ pis)*+piatrit 1,
The multiplicities of the roots of C* are:
a():v—al_ a2=1:
_m+tn (pia—ple) (m+na)+m—ne
2 2V A ’
...{3.15)

and

gt (Pl pi)nt )t m—
2 WA :
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For special classes of two associate class designs, the §; and «;,
i=0, 1, 2, take on the following values:

(i) For a GBPBBD ‘-having a group divisible association
scheme, 0, (C*)=0, 0; (C*)=w/k* and 8y (C*)=r*k*
— N+ A k*=[nA) (v—n) A"]/k*, with multiplicities oo (C*)

=1, %(C*)=m—1, and dg(_C_)—m (n—1).

(i) For a GBPBBD having a rriangular association scheme,
fo (C¥)=0, 0, {(CH)=[r*k*—n;—(n—4)r;+ (n—)Ns)/K*,
and 02 (CH)=[r¥k*— N+ M+ (] — A3))/k*, with multipli-
cities oco(C*)—I % (C*)=n—1, and 2 (C*)—n (n—3)/2.

(#ii) For a GBPBBD having a latin.square type association
scheme, 8, (C*)—'l 0y (C*)=[r*k*—ng—(s—i) Aj+(s—i+
DA/, and 4, (CH= =[r*ic*— 7\+17\ (i— 1A;)/k*, with
multiplicities ao(C*)~J 0y (C*)=i (s—]) and o ((_,’_*)
=(s—i+1) (s—1). :

4. RELATIVE EFFICIENCY OF A GBPBBD

A method of comparing two designs is to compute the relative
- efficieney of one design over the other. Thus, given (v, b, r¥, k¥*),
the efficiency of a GBPBBD relative to a general binary balanced
block design (GBBBD) [if such designs exist] may be obtained as
follows. Let (g, h) be the first associates, then for a GBPBBD, the

Var (T: Th) .
_ 29 PR etk =N A + (pl — PR (A — AS)}
ot k¥*det J

and for a GBBBD, the Var ',c;,—;\,,=(2‘02/r*)(r*k*/v7\*) (see Shafiq and
Federer [6]). The efficiency of a GBPBBD relative to a GBBBD,
‘where (g, ) are first associates, is : .
E;(GBPBBD/GBBBD)

. k*2det

NI = R+ Ap o (pla — PR — )}
. r¥E*—ag + A

- YAF

P1>(7\ —7\0)2

- 3 - s “ oo 4.1
VAP k* =g+ 2 1 (Pl — pl))()‘l Ay)J] 1)
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Similarly, E;,(GBPBBD/GBBBD) denotes the efficiency of GBPBBD,

- relative to GBBBD, where (g, i) are second associates, thus :

E,(GBPBBD/GBBBD)
_r*k*-_7‘3+7‘.2 . Plzz(z\;' 7“2)2 4 2)
- YA¥ YWY =N + A + (Pla — Pl (M — Ag))

For group divisible designs having two asiociation classes, we
A
may write 7,, variances of the difference of 7,,—t;, and efficiencies
as:.

A k* A+ (v = DA, . _7\;__7\‘2 ]
- v)\'z [(n}lﬂ*. (v _n))\; )Qg+ n}\;+(v_n)/\.2 Sl(Qg) s (43)

Var (Qg - ‘?lx)= 20?

k* e .
”m if (g, h) arefirst associates, ...(4.4)

A A
Var(Tg—le) =202

K/ A+ @G- 1A
( 140 ])_A? )if (g, h) are second associates,

WAy \ #AL+ (v — ),
...(4.5)
E{(GDGBPBBD/GBBBD)
A —n);
=’—1—1_f(vaﬁ)—2-if (g, k) arefist associates, ...(4.6)
and .
E(GDGBPBBD/GBBBD)
}\.‘) n)"o . 7\. .
=-7‘;—‘ ( ﬁ-ﬁ) if (g, k) are second associates ...(4.D

The average variance for a group divisible GBPBBD is obtained as :

= 20%F N, 4 (A —AY) 1]
[ 5 ...(4.8)

V=0, a1y

Tﬁe average efficiency is :
E’ (GDGBPBBD/GBBBD)

ol W —AY) 1]
=N x| 2T ) 1
(=Dl [v?\;+n(7\;_7\;) y I

.(4.9)
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5. EXISTENCE AND OPTIMALITY' OF GBPBBD

The existence of a basic binary partially balanced incomplete
block design (BBPBIBD) with ‘parameters (v, b, r, k, 21, Dg, ..., A
n;;=0 or 1) and the parameters of the association scheme (#y, e, ...,
ng, pj-k (1, J, k=1, 2, ..., 5)) implies the existence of a general binary
partially balanced block design (GBPBBD) with parameters (v, b, r¥,
k*, N, Ny,..., Ay ny; =mg or my) and with the same parameters of
the association scheme. ~ In the class of all equi-replicated and equi-
sized block GBPBBDs, the question arises as to which one(s) of these
partially balanced block designs has (have) the fsmallest average .
variance. We answer this question for group divisible general binary
partially balanced block designs with two association classes in the
next three theorems.

Theorem 5.1, In the class of all equi-replicated equi-sized block
group divisible general binary partially balanced block designs (GD
GBPBBD) with two association classes with parameters (img #g, by
r3 kg, Ngs Yo' nfj Moa OT myy) which are derived from group divisible
basic binary partially balanced incomplete block designs (GD
BBPBIBD) having two association classes with paramecters (my 4, by,
Fay Kd, Mgy heg; 1i;=0 or 1) such that 2;,=294+1, the design{s) which
maxmimizes the value of

ir(Cp— (ma—1) (v—ma) {nabalma— moea)[vrz)?
4. r;-(__(_f*)+(2md— 1— v) nabg (mld_"mOd)Z/W‘{;

is (are) 4-optimal, where tr(Cyi=[(v— 1(r3—ra}(ba— ra)(m— moa)?/r;].

Theorem 5.2, In the class of all equi-replicated and equi-sized block
group divisible general binary partially balanced block designs (GD
GBPBBD) having two association classes with paiameters myny, by,
7y, kg Mg Ngg, N =Mog OF m1a) which are erived from group divisi
ble basic binary partially balanced incomplete block designs (GD
BBPBIBD) having two association classes with parameters (mgn,, by,
Y Kay Ma, Aag; 1;;==0 or 1) such that A;2=2g,4+ I, and design(s) having
the minimal value of {ra(bg—ra)+bsma— 1)} (m1g—mya)? is - (are)
E-optimal.

Theorem 5.3. In the class of all equi-replicated and equi-sized
blocks group divisible general binary partially balanced block designs
(GD GBPBBD) having two association classes with parameters
(manta, ba, 1y, kg Mg Nags M =Mea OT 7yg) which are derived from
group divisible basic binary partially balanced incomplete block
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designs (GD BBPBIBD) having two association classes with para-
meters (maty, by, ra, ka, Ma, d24; #;;=0 or 1) such that A;=%X+1, the"
design(s) having the minimal values of

{ralba— (‘d) +ba(ng— 1)}mya—mea)?
and { ralba—ra)—bg ( - L )} (m1g—nmoa)®,
Mg/, . :
is (are) D-optimal.

The proofs of the theorems have been omitted forlack of space.
However, they are straightforward, and if any difficulty ensues, the
reader is invited to write one of the authors. Instead, an example
illustrating the results of the theorems is presented next,

- 6. AN EXAMPLE

Some consequences of the theorems considered in the last
section are illustrated by the following example. Before proceeding
to the example, some items should be noted. A frequent assumption
of statisticians is that block size must be relatively small. Although
this assumption may be true in many situations, it is not universally
true. In sugar cane and pineapple plantations in Hawalii, sugar beet
fields in Colorado, wheat fields in Kansas and Oklahoma, in a single
growth chamber, etc. blocking is often of no avail in reducing varia-
tion in an experiment. Minimum, not maximum, blocking should
be used to control heterogeneity in the experimental material. In
some situations, quite large numbers of experimental units can be
included in a block without increasing the estimated residual variance.
The example given by Shafiq and Federer [6] illustrates the efficiency
of a GBBBD relative to traditional designs. Also, in some ex-
periments, the experimental technique and procedure induce hetero-
geneity between blocks, whereas none may be present if uniform
techniques and procedures were used. Finally, the statistician should
provide designs for all situations, not merely a subset of them.

Example 6.1. Suppose an experimenter wants to test 12
treatments in, at most, 12 blocks of homogeneous material. We know
that a balanced design would require at least 22 blocks [see
Raghavarao (4)]. Possible candidates for performing this experiment
would be group divisible (GD) partially balanced incomplete block
designs. Suppose all the homogencous material must be used and
r*=64 is fixed. There are four GD basic binary partially balanced
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TABLE 6.1

Plans for group divisible basic binary partially balanced incomplete
block designs (GD BBPBIBD)

BBPBIBD —1 BBPBIBD—Z
v=12, b=3, r=2, k=8 v=12, b=4, r=3, k=9
M=2, »=1, m=3,n=4 . Mn=3, re=2, m=4, n=3
Blocks Blocks
1 l 2’ 3 ' 1 } 2 3 ] 4
. ) 3 1 2 3 4
2 3 4 5
2 3 4
3 4 5 6
4 5 6
5 6 7 8
5 6 7
6 7 8 9
7 8 9
7 8 9 10
8 9 10
9 10 11 12.
lo 1112 0 11 12 1
11 12 1
11 12 1 2
BBPBIBD—3 BBPBIBD—4
v=12, b=6, r=5, k=10 y=12, b=12, r=4, k=4
=5, =4, m=6, n=2 A=2, de=1, m=6, n=2
Blocks Blocks
1‘2'3'415‘6 I2’3'4‘5’6‘7.8’9*10‘11‘]2
1 2 3 4 5 6
2 3 4 5 6 71]]1 2 3 4 5 6 7 8 91011 12
3 4 5 6 7 8
4 5 6 7 8 9 4 5 6 7 8 910 11 12 1
5 6 ; 8 9 10 2 3
7 8 10 1
3910111%1:1Z 5 6 7 8 910 11 12 1 2 3 4
9 10 11 12 1 2.
011 12 1 2 3 7 8 9101112 1 2 3 4 5 6
11 12 1 2 3 4
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TABLE 6.2

Plans for group divisible general binary parrially balanced block designs
derived from the designs in Table 6.1

oD , Par agg’}fEB% GD Optimality me‘asurcs
BBPBIBD
ol | modi a2 1;’ i , ur, | v ‘ v
—1 1 25 2048 1024 0 32 32 2% 2048 6720 663.8 11264
2 256 1926 1085 2 31 29 2% 1682 677.7 6724 9251
3 256 1816 1140 4 30 26 2% 1352 6829 679.6 7436
4 256 1718 1189 6 29 23 2% 1058 687.5 6855 5819
5 256 1632 1232 8 28 20 2% 800 691.5 690.4 4400
6 256 1558 1260 10 27 17 2% 578 6950 6944 3179
7 256 1496 1300 12 26 14 2° 392 698.0 697.6 2156
8§ 256 1446 1325 14 25 11 2* 242 7002 700,1 1331
9 256 1408 1344-16 24 8 2% 128 702.0 702.0 704
10 256 1382 1357 18 23 5 2¢ 50 7032 7032 275
11 256 1368 1364 20 21 2 2% % 703.9% 703.9%  44*
~2 12 192 134 924 1 20 20 3 1200 6853 683.8 4400
13 192 1216 960 4 20 16 3 768 692.0 6914 ‘2816
14 192 1132 988 7 19 12 3 432 697.3 6971 1584
15 192 1072 1008 10 18 8 3 192 701.0 701.0 704
16° 192 1036 1020 13 17 -4 3 48 7033 7032 176
—3 17 128 736 672 4 12 8 5 320 7034 7034 704
18 128 686 682 9 11 2 5 20 7037 7037  44%
—4 19 64 512 256 0 16 16 32 8192 576.0 5726 11264
20 64 454 285 1 14 13 32 5408 619.5 618.1 7430
21 64 408 308 2 12 10 32 3200 654.0 653.5 4400
22 64 374 325 3 10 7 32 1568 679.5 6794 2156
23 64 352 336 4 8 4 32 512 6960 6960 704
24 64 342 341 5 6 %32 32 7035 7035  44%
A) Ip=raa—ra) (4) IVy=A-optimality criterion

*

@) Hy=ra(ba—ra)ma—mg)*  (5) Vy=E-optimality criteriop
() Hlg=1r (¢2p
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incomplete block designs having A =2+ 1 (Bose, Clatworthy and Shri-
khande [2]). These designs would be used to construct GD GBPBBD
for v=12 and r*=64. The plans for these GD BBPBIBD’s are given
-in Table 6.1. The parameters of GD GBPBBD constructed from GD
BBPBIBD-1 to GD BBPBIBD-4 in Table 6.1 and various optimality
measures are presented in Table 6.2.

Twenty-four designs listed in Table 6.2 from a complete class
of GD GBPBBD with v=12 and r*=64 derived from GD BBPBIBD
having ;=N +1. Six different optimality measures described in
Table 6.2 result in six subclasses. Optimal designs in each subclass
marked ¥ are given in Table 6.3.

TABLE 6.3

Optimal designs in each of six subclasses

Optimality measure 0‘;’!’;',222’,‘[8 ;g n
mg—mog . 24
1 1—11
1 11
1 : 11
v i
Vi ‘ 11, 18, 24

We note a few interesting results from Table 6.3. Design 24 is
the only member of its class which achieves m;—mo=1, but optimality
criterion IV would select Design 11 as the optimal one; and this
design estimates all the elementary contrasts with the minimum
average variance of 20® (.015627), and therefore is optimal. The
average variance of all elementary contrasts is 202 (.015632) for
Design 18 and 2¢? (.015636) for Design 24. Designs 11, 18 and 24
have the same minimal value 44 of V;; hence, they are equivalent in
the sense of E-optimality,
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